Microsoft Corporation
ATTENTIVE ADVERSARIAL DOMAIN-INVARIANT TRAINING
Last updated:
Abstract:
To generate substantially domain-invariant and speaker-discriminative features, embodiments may operate to extract features from input data based on a first set of parameters, generate outputs based on the extracted features and on a second set of parameters, and identify words represented by the input data based on the outputs, wherein the first set of parameters and the second set of parameters have been trained to minimize a network loss associated with the second set of parameters, wherein the first set of parameters has been trained to maximize the domain classification loss of a network comprising 1) an attention network to determine, based on a third set of parameters, relative importances of features extracted based on the first parameters to domain classification and 2) a domain classifier to classify a domain based on the extracted features, the relative importances, and a fourth set of parameters, and wherein the third set of parameters and the fourth set of parameters have been trained to minimize the domain classification loss.
Utility
5 Oct 2021
27 Jan 2022