Microsoft Corporation
Personalization enhanced recommendation models
Last updated:
Abstract:
Methods, systems, apparatuses, and computer program products are provided for a two-phase technique for generating content recommendations. In a first phase, a baseline recommender is configured to generate a baseline content recommendation using one or more content recommendation models, such as a Smart Adaptive Recommendations (SAR) model, Factorization Machine (FM) or Matrix Factorization (MF) models, collaborative filtering models, and/or any other machine-learning models or techniques. In a second phase, a personalized recommender implements a vector combiner configured to combine profile vectors, content vectors, and the baseline content recommendations to generate combined user vectors. A model generator may train a machine-learning model using the combined user vectors and training data comprising actual interaction behavior of the users, which may be then applied to identify a content recommendation for a particular user.
Utility
18 Sep 2018
15 Feb 2022