Microsoft Corporation
CONDITION-INVARIANT FEATURE EXTRACTION NETWORK

Last updated:

Abstract:

To generate substantially condition-invariant and speaker-discriminative features, embodiments are associated with a feature extractor capable of extracting features from speech frames based on first parameters, a speaker classifier capable of identifying a speaker based on the features and on second parameters, and a condition classifier capable of identifying a noise condition based on the features and on third parameters. The first parameters of the feature extractor and the second parameters of the speaker classifier are trained to minimize a speaker classification loss, the first parameters of the feature extractor are further trained to maximize a condition classification loss, and the third parameters of the condition classifier are trained to minimize the condition classification loss.

Status:
Application
Type:

Utility

Filling date:

30 Nov 2021

Issue date:

26 May 2022